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Designing localized multipulse solutions of the discrete nonlinear Schro¨dinger equation
with an external potential

D. Hennig and H. Gabriel
Freie-Universität-Berlin, Fachbereich Physik, Institut fu¨r Theoretische Physik Arnimallee 14, 14195 Berlin, Germany

~Received 20 August 1997!

We construct standing localized multipulse states for the nonintegrable discrete nonlinear Schro¨dinger equa-
tion ~DNLS! with an external potential. The construction method is based on a nonlinear map approach, the
orbits of which represent stationary solutions of the DNLS. The single~stationary! soliton states of the DNLS
lattice are associated with single-pulse homoclinic and heteroclinic connections. It is demonstrated that the
external potential can be adopted to excite multiple solitons at arbitrarily chosen locations on the lattice.
Furthermore, multiple soliton states having different maximal amplitudes are excited. Finally, we use the orbits
of the stationary map as initial conditions to design stationary localized multipulse solutions in the dynamics of
the ~time-dependent! discrete nonlinear Schro¨dinger equation and discuss their linear stability.
@S1063-651X~98!06802-0#

PACS number~s!: 03.40.Kf, 63.20.Pw, 63.20.Ry
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I. INTRODUCTION

The nonlinear Schro¨dinger equation~DNLS! represents a
prototype of a nonlinear lattice system that consists
coupled nonlinear oscillators. The physical relevance of
DNLS is documented in a series of publications@1–8#. A
typical feature described by the DNLS is the ability of se
trapping of certain physical quantities~e.g., excitation en-
ergy! as intrinsic localized modes at a single site or a f
sites of the lattice.

For illustration we quote here the application of DNLS
optics when it models the propagation of electromagn
waves in arrays of coupled nonlinear optical waveguides@9–
13#. A key problem in the study of the DNLS~not only in the
optical context! is the determination of the stable localize
excitation modes, which can serve for the reliable storag
energy@14–19,11#. The discrete intrinsic localized modes
nonlinear lattices have attracted recently much interest
rigorous results concerning their existence and stability h
been derived@20,21#. Recently, such localized modes ha
been experimentally observed in an electrical network a
modeled by a DNLS@22#.

For integrable continuous systems~partial differential
equations!, such as the continuum nonlinear Schro¨dinger
equation~NLS!, well-developed methods exist to constru
soliton solutions. These solitons accomplish optimal loss
energy storage and energy transport, respectively@23#. How-
ever, the discrete version of the NLS in the form used
many applications@see Eq. ~1! below# is nonintegrable
@24,25# and therefore do not exhibit exact soliton solution
Nevertheless, as demonstrated in@26# the excitation of stable
localized single-pulse states of the DNLS is possible des
its nonintegrability property. It is shown in detail that th
results of a stationary analysis can be used to excite local
stationary states of designed amplitude and pulse width
the lattice. The stationary DNLS problem can be tackled b
nonlinear map approach~for details we refer to@26#!. It is
demonstrated that stable localized lattice states are supp
by map orbits related to homoclinic and heteroclinic conn
tions. These homoclinic and heteroclinic orbits deliver t
single-pulse localized states on the lattice in the form of d
571063-651X/98/57~2!/2371~6!/$15.00
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and bright solitons. However, with view to application it
desirable that the lattice supports also solutions with multi
pulses carrying the energy in several portions.

The present paper is devoted to constructing such mult
soliton states for the DNLS with an external potential. T
method is based on a repeated use of the same single-
homoclinic ~heteroclinic! map orbit for suitable iteration in-
tervals of the nonlinear map. To this aim we adopt the
ternal potential such that the homoclinic orbit is left at
homoclinic point near the hyperbolic equilibrium to be co
tinued as a linear periodic orbit of tiny amplitude for a s
lected iteration interval~lattice section!. Eventually, the ho-
moclinic orbit is reentered to excite another soliton pulse
the lattice.

The current approach differs from the treatment
multiple-pulse orbits based on the complicated properties
a homoclinic tangle associated with a nonintegrable map~or
Poincare´ surfaces of sections of chaotic time-dependent s
tems!. A single-pulse homoclinic~heteroclinic! orbit makes
on excursion away from some hyperbolic equilibrium po
~or a periodic orbit, or invariant torus!, and then returns to it
for an infinite number of iterations~in infinite time in the
case of time-dependent systems!. Moreover, there exists als
other types of homoclinic orbits that make more than o
excursion away from the hyperbolic equilibrium point. Th
result is a multiple pulse homoclinic orbit@27–30#. How-
ever, this process reveals a complicated irregular spa
~and/or temporal! jumping behavior between subseque
pulses. Multiple-pulse jumping orbits have been discuss
e.g., in the context of a modal truncation~two modes! of the
damped-forced NLS@31–33# and also in@34,35#. We under-
line that the advantage of our method of constructing mu
pulse solutions based on regaining the same single-pulse
moclinic ~heteroclinic! orbit is that we not onlycontrol the
spatial distance between consecutive pulses, but are also
to tailor the amplitudes of the pulses, individually.

The paper is organized as follows: In Sec. II we descr
the DNLS equation with external potential. The stationa
DNLS problem is introduced and attributed to a tw
dimensional nonlinear map. In Sec. III we present the me
ods for constructing multiple soliton solutions at select
2371 © 1998 The American Physical Society
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2372 57D. HENNIG AND H. GABRIEL
lattice locations and/or of selected amplitudes. These stat
ary multiple soliton states are then used as initial conditi
for the time-dependent DNLS to create standing localiz
solutions showing multiple pulses. Finally, we discuss
stability properties of the localized multipulse excitations

II. THE DISCRETE NONLINEAR SCHRO¨ DINGER
EQUATION

We study the discrete nonlinear Schro¨dinger equation
~DNLS!

i
dcn~ t !

dt
52gucn~ t !u2cn~ t !2V@cn11~ t !1cn21~ t !#

2Fncn~ t !, ~1!

wherecn(t) is a complex amplitude,g is the nonlinearity
strength, andV is the transfer matrix element coupling adj
cent oscillators at lattice sitesn and n61, respectively.Fn
determines a static external potential~field! with real-valued
amplitudes along the lattice. The dynamics of nonline
Schrödinger equations~including the integrable Ablowitz-
Ladik equation! with external spatially uniform and time
varying potentials Fn(t)5E(t)n has been studied in
@24,36,37#. These studies focused mainly on the integrabi
and the existence of both soliton and breather solutions
well as a dynamically induced localization in the presence
the field.

We are interested in time-periodic, but spatially localiz
solutions of Eq.~1!. Substituting the ansatz

cn~ t !5fnexp~2 ivt !, ~2!

with real amplitudesfn and the phase~oscillation frequency!
v into Eq.~1!, we derive the following two-dimensional ma
R2→R2 by definingxn5fn andyn5fn21 where the lattice
index plays the role of a discrete ‘‘time’’

M:H xn1152~v1gxn
21Fn!xn /V2yn

yn115xn

J . ~3!

This map has been studied in the free-field caseFn50 in
@6,38,39,26#.

For practical reasons lattice chains of large but finite nu
ber N of sites of order 200 are chosen. The mapM is initi-
ated with a starting value (x1 ,y1)[(f1 ,f0) corresponding
to the first two lattice amplitudes at the left end of the cha
With each iteration step we gain then the amplitude at
lattice next towards the right end of the chain.

For later use we briefly review the properties of the m
M in the free-field case ofFn50 @26#. Reversibility of the
mapM is established by the factorizationM5M0M1 with

M0 :H xn115yn

yn115xn

~4!

and
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M1 :H xn115xn

y52~v1gx2! xn /V2yn ,
~5!

whereM0,1 are involutions and their corresponding symm
try lines are given byS0 : x5y and S1 : y52(1/2)(vx
1gx3)/V. The inverse map is determined byM21

5M1M0.
To obtain stationary localized solutions in the form

bright ~dark! solitons, it suffices to study the fixed poin
~period-1 orbits! of the mapM @26#, which are located at

x̂050, x̂656A2
v12V

g
, ~6!

wherex̂6 exists only if sgn(v12V)52sgn(g).
The results of the stability analysis of the fixed poi

( x̂0 ,ŷ0) at the origin can be summarized as follows@26#:

Case v/V sgn(g) Stability

~i! .22,,2 .0 elliptic
~ii ! .22,,2 ,0 elliptic
~iii ! ,22 .0 hyperbolic
~iv! .2 ,0 reflection

hyperbolic

Concerning the pair of points (x̂6 ,ŷ6) their stability
properties are given by

Case Stability

~ii ! hyperbolic
~iii ! elliptic
~iv! elliptic

Since the mapM is nonintegrable@26#, the stable and
unstable manifolds belonging to the unstable hyperbo
fixed points intersect each other transversely yielding
moclinic orbits to the point (x̂0 ,ŷ0) in the cases~iii ! and~iv!
whereas in case~ii ! heteroclinic orbits connecting the poin
( x̂1 ,ŷ1) and (x̂2 ,ŷ2) result.

We described in@26# how the homoclinic and heteroclini
orbits of the mapM support single-pulse localized solution
on the DNLS lattice. In case~iii ! there exist two homoclinic
orbits whose points alternate along the invariant manifol
Each of the homoclinic orbits has one of its points on t
symmetry lineS0 and S1, respectively. Under the mappin
these points rapidly approach the map plane origin. The
moclinic orbit crossingS0, which we denote by$feven%, rep-
resents a stationary excitation pattern (•••↑↑↑↑•••) on the
lattice chain, called even-parity mode in@40# and sometimes
also intersite centered local mode@19#. ~The dots stand for
vanishingly small amplitudes in the exponential tail of t
excitation pattern.! The other homoclinic orbit$fodd% has
one member on S1 and obeys the mode patter
(•••↑↑↑•••) with three large amplitudes called odd-pari
mode@41# or on-site centered local mode@19#.

In case~iv! the homoclinic map orbit supports a soliton
like solution on the lattice chain which exists in the g



u

LS
se
ng
ty
g

it

ns

nd
in

an

-

e-
is

the
nd

se
at-

k-
es
e
on

ial
.

the

l

p
p
,

rn.

t
it

by
is

r-

-

li-
c

57 2373DESIGNING LOCALIZED MULTIPULSE SOLUTIONS OF . . .
above the linear passing band (v.2V) and has alternating
signs for adjacent amplitudes, i.e., sgn(fn11)52sgn(fn) as
a characteristic feature. This stationary localized struct
has been called astaggered solitonby Cai, Bishop, and
Gro”nbech-Jensen in their study of the combined AL-DN
equation@17#. Correspondingly, the soliton solution of ca
~iii ! is called unstaggered soliton. Note that upon sign cha
g→2g and v→2v, the map has the symmetry proper
sgn(fn11)52sgn(fn) so that the unstaggered and sta
gered soliton replace one another. For positive~negative! g
the unstaggered odd-parity~staggered even-parity! mode has
lower energy than the unstaggered even-parity~staggered
odd-parity! mode@17,26#.

Concerning case~ii ! the resulting heteroclinic map orb
represents a kinklike solution, also called adark solitonon
the lattice. There exist staggered and unstaggered versio
this soliton too.

In Fig. 1 we show the first windings of the stable a
unstable manifolds of the hyperbolic fixed point at the orig
in the x-y-map plane for case~iii !. One clearly recognizes
the homoclinic points as the intersection of the stable
unstable manifolds. We superimposed the symmetry linesS0
andS1. Taking the stationary odd-parity mode$fodd% as the
initial conditionscn(t50)5fn for the time-dependent sys
tem ~1! the amplitude profileucn(t)u2 of the standing bright
solitonlike solution on the DNLS lattice is excited as d
picted in Fig. 2. In Fig. 3 the even-parity localized mode

FIG. 1. First windings of the homoclinic tangle of the hype
bolic equilibrium point at (0,0) for the mapM in the free-field case
Fn50. The symmetry linesS0 and S1 are superimposed. Param
eters:v522.1, g51, andV50.8.

FIG. 2. The amplitude profileucn(t)u2 showing the standing
bright solitonlike solution on the DNLS lattice. The stationary so
ton ~odd-parity mode! is excited with the help of the homoclini
orbit with one point onS1 on the map plane shown in Fig. 1.
re

e
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d

shown. Note that for the excitation profileucn(t)u2 the stag-
gering of the amplitudesfn plays no role.

III. EXCITATION OF MULTIPULSE LOCALIZED
STATES

We now turn to the map properties in the presence of
external field. It is a characteristic feature that the bright a
dark solitonlike solutions of the DNLS in the free-field ca
represent single soliton excitations, i.e., their excitation p
terns exhibit a single pulse~around the soliton center! of
high ~low! lattice amplitudes, which emerges from the bac
ground. On either side of the soliton center the amplitud
drop ~rise! exponentially with increasing distance from th
soliton center to vanishing amplitudes for the bright solit
~to a nonzero constant level for the dark soliton!. In this
section we show that for the DNLS with external potent
Fn the excitation of multipulse localized states is possible

We have just shown that for given sign ofg the existence
as well as the type of solitonlike solutions depend on
value of the ratiov/V. From Eq.~3! we infer immediately
that the frequencyv can be tuned locally by the externa
potentialFn . In this way it is possible to ‘‘jump’’ at a certain
iteration step ofM deliberately from one orbit on the ma
plane of a givenv to different target orbits on the ma
planes belonging toṽn5v1Fn . Considering, for example
the potential

Fn>152~v1g x1
2!2V ~11y1 /x1! , ~7!

we obtain the linear map

Mlin :H xn115yn

yn115xn ,
~8!

giving orbits of period-1, that is a constant excitation patte
Moreover, suppose one knows at the iteration ‘‘time’’~lat-
tice site! m.1 the coordinates (xm ,ym) of one orbit member
of an arbitrary~nonlinear! orbit, then this orbit can be left a
that iteration ‘‘time’’ m to proceed as a linear period-1 orb
xj 115xj by adapting the potential due to Eq.~7! for j >m.
After any iteration step the nonlinear map can be restored
switching off the external potential and hence the orbit
brought back to the original nonlinear one.

FIG. 3. The amplitude profileucn(t)u2 of the even-parity local-
ized mode.
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2374 57D. HENNIG AND H. GABRIEL
Multiple solitons at selected lattice sites

With respect to bright multiple solitonlike solutions of th
DNLS, we can apply the method described above to cre
exact standing~single! soliton states at selected lattice loc
tions. All we need is the knowledge of one member of t
homoclinic orbit to a given set of parameters (v,g,V). This
can be achieved via the normal form computation as
scribed in@26#. The complete homoclinic orbit and hence t
soliton state can be derived by iterating the mapM. The
width of the soliton pulse that is governed by the dropoff
the amplitudes with increasing distance from the soliton c
ter site m can be estimated byufm1ku<lmufku with l5

@2v1Av224V2#/(2V) being the largest eigenvalue of th
tangent map due to linearizing around the hyperbolic po
Note that the larger the ratiov/V, i.e., the deeperv lies in
the gap below the linear passing band, the more rapid is
amplitude decay.

In order to excite well distinguished multipulse excit
tions on the lattice, we need to know beyond which latt
site the soliton amplitude has decayed sufficiently strong
the exponential tail of the soliton where the amplitudes
actually negligible. Then the orbit can be continued as
linear orbit of very small~constant! amplitudes for a selecte
iteration interval~lattice segment!. Afterwards the orbit is
forced back to a map plane on which it comes to lie on
homoclinic point departing from the origin with further ma
iterations and thus exciting another soliton pulse on the
tice. Therefore it is appropriate to define thecutoff sitesas
the lattice sitesm6k apart from the soliton centerm such
that ufm6k /fmu<e!1. Since the homoclinic points ap
proach the map origin asymptotically, the value ofe can be
chosen arbitrarily small by selecting sufficiently the numb
ne of map iterations such that

ne>l21e1/m . ~9!

~Very small amplitudes are typically obtained after 10220
iterations of the central soliton amplitude.!

The process of multisoliton creation proceeds in the f
lowing way: Firstly, we excite a single soliton centere
around the sitem1 in the standard manner using the h
moclinic orbit. At its cutoff sitem11k1 the external potentia
Fm11k1

52@v1g(xk11m1
)2#2V(11yk11m1

/xk11m1
) is

switched on to leave the homoclinic orbit and to enter
linear period-1 state of almost negligible amplitudesxj
[xk11m1

. After progressing a chosen numberM of period-1
cycles the external potential can be switched off. To cre
the next lattice soliton centered at sitek11m11M11, the
homoclinic orbit has to be reentered at the po
(yk11m1

,xk11m1
), which amounts to a reverse operation

the last member of the linear period-1 orbit according
(xk11m11M ,yk11m11M)→(yk11m11M ,xk11m11M). The re-
verse operation is described below@see Eq.~10!#.

In this way we are able to excite multisoliton states ha
ing their soliton center at any selected lattice location. Thi
due to the switching mechanismk1 cycle of the linear
period-1 orbit→ homoclinic orbit→ k2 cycle of the linear
period-1 orbit, etc.

This process is illustrated in Fig. 4 for a two-soliton sta
We computed the central ~maximal! amplitude
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fc51.045 789 20 of the soliton as thex coordinate of the
homoclinic point (xc

h ,yc
h) lying on the symmetry lineS1 for

the parametersv522.1, g51, andV50.8 analytically via
the corresponding Birkhoff normal form@26#. With this start-
ing value the map has been iterated to create a soliton on
lattice centered around the siten519. Since the soliton am
plitudes at sitesn>38 fall below 1025, giving a ratio
fn>38/f19,231025, the siten538 has been taken to b
the cutoff site. Here the external potential in the map
switched on appropriately to progress the period-1 orbit
very small amplitudes for eight cycles. Afterwards forn
>49 the orbit is traced back to the homoclinic orbit, whic
excites the second pulse of the two soliton state. Finally,
use the amplitude profilefn of the stationary two-soliton
constructed with the help of the mapM as the initial condi-
tions for the time-dependent DNLS~1! with external poten-
tial to excite the standing two-soliton state shown in Fig.

Strongly confined multisolitons of selected amplitudes

We now exploit the reversibility property of the mapM
to pass repeatedly through the single-pulse homoclinic o
and excitestrongly confined multisoliton states. To this aim
we use the reflection symmetry of the mapM on the lineS0.
This means that for every homoclinic point (xh,yh) lying
below the liney5x for which fk21,fk there exists a mir-
ror point (yh,xh) above that line withfk21.fk . Under the
action of the map M the amplitudes (fk11 ,fk)
5M (fk ,fk21) grow ~fall! for homoclinic points below
~above! the line S0, i.e., ufk11u.ufku (ufk11u,ufku). In
order to produce strongly confined multisolitons, we first e
cite a soliton using the homoclinic orbit. One takes a h
moclinic point (xk

h ,yk
h) below the lineS0 sufficiently close to

the origin, such that the corresponding lattice amplitud
(fk11 ,fk) ~in the exponential tail of the soliton! are lower
than the one at the cutoff site. The mapM is iterated and
eventually the homoclinic point (xc

h ,yc
h) lying on the sym-

metry lineS1 is reached. Thex coordinate of this point de-
termines the maximum soliton amplitudefc . For further
iteration the map orbit proceeds above the lineS0 until the
corresponding mirror point (yk

h ,xk
h) to the starting point

(xk
h ,yk

h) in the very vicinity of the map origin is reached
This yields a first soliton. Then we reverse the coordinates
the homoclinic point (yk

h ,xk
h) → (xk

h ,yk
h) with the following

reverse operation:

FIG. 4. A two-pulse solitonlike state~for details see text!.
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57 2375DESIGNING LOCALIZED MULTIPULSE SOLUTIONS OF . . .
xk1152~v1gxk
21Fk!xk /V2yk :5yk ,

yk115xk , ~10!

which is accomplished by the local potential

Fk52S v1gxk
212V

yk

xk
D . ~11!

Therefore the map repeats the homoclinic orbit and a sec
soliton adjacent to the first is built up. Figure 5 shows suc
two-soliton state for which one soliton is immediately fo
lowed by a second one.

The reverse operation can also be applied before the it
tion of the starting point (xk

h ,yk
h) reaches the homoclinic

point (xc
h ,yc

h) on S1. In this fashion a soliton of amplitude
less than the largest possible is excited. In dependence o
numbern of iterations performed on the homoclinic orb
below S0 before the reverse operation the resulting latt
soliton has a different maximal amplitude, that is, the lar
n the higher the amplitudefn11<fc .

In Fig. 6 we show a DNLS lattice exhibiting five soliton
the centers of which are positioned 31 lattice sites apart f
each other. In creating this multipulse lattice excitation
applied both the method of creating solitons at chosen lo
tions ~see above! as well as the reverse operation to exc
solitons of chosen amplitude.

The central soliton placed around the siten581 has the
maximal possible amplitudefc determined by thex coordi-
nate of the homoclinic point onS1. The maxima of the two
adjacent solitons to its left and right side correspond to thx
coordinates of the homoclinic points preceding the point
S1, respectively. Since the individual maxima of each solit
correspond to consecutive homoclinic points from the sa

FIG. 5. Two very confined solitonlike states.

FIG. 6. A five-pulse lattice excitation.
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homoclinic orbit, the soliton maxima drop exponential
with increasing distance from the central soliton.

Solitons with more than two equal center amplitudes

Finally we demonstrate how solitons with more than tw
equal central sites can be excited. We recall that the two-
center of the staggered even-parity mode corresponds
homoclinic point withxc

h52yc
h . The two members (x̂1 ,ŷ2)

and (x̂2 ,ŷ1) of the period-2 orbit exhibit the same symm
try. Therefore, the even-parity center can be continued o
more than two lattice sites as a period-2 orbit by applying
following external potential, which turns the soliton cent
into a period-2 orbit@cf. Eq. ~6!#

F52@v12V1~xc
h!2# . ~12!

Combining this method of continuing a period-2 orb
with the technique of switching from a linear periodic orb
to the homoclinic orbit~and vice versa!, we create the exci-
tation pattern shown in Fig. 7. The even-parity center am
tudes have been kept for 20 lattice sites for each of the
solitons.

IV. LINEAR STABILITY

We have used the map orbits of the different station
multipulse excitations as initial conditions for the tim
dependent DNLS~1! with external potential to excite stand
ing multisoliton solutions. This proceeds in the same way
in @26# to excite single soliton states for the free-field DNL
An important question is whether these stationary sta
cn(t)5f exp(2ivt) are linearly stable. For perturbation
un(t) of the stationary solutions maintaining the symme
properties of the excitation pattern,~e.g., for the unstaggere
solitons with real fn>0 all un must be real and non
negative! we can construct a Lyapunov function assuri
stability. We exploit the conserved quantityP5(nucnu2. As
the Lyapunov function we take

L5P2Ps , ~13!

wherePs5(nfn
2 . It is readily seen that

dL

dt
50 , L~fn!50 , L~fn1un!>0 . ~14!

To investigate linear stability for arbitrary complex pe
turbationsun(t) we make the ansatz@1#

FIG. 7. A two-pulse state based on two even-parity localiz
modes with their maximal amplitudes continued over 20 latt
sites.
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2376 57D. HENNIG AND H. GABRIEL
cn~ t !5@fn1un~ t !#exp~2 ivt ! , ~15!

whereun(t) are small perturbations. Linearizing Eq.~1! we
obtain the system in tangent space

i
dun

dt
52g ~2fn

2un1fn
2un* !2V~un111un21!

2~v1Fn!un . ~16!

Settingun5xn1 iyn with real x andy and decomposing Eq
~16! into real and imaginary parts we obtain the system

ẋ52~gfn
21v1Fn! yn2V~yn111yn21!, ~17!

ẏ5~3gfn
21v1Fn!xn1V~xn111xn21! . ~18!

The linear stability depends on the spectral properties
the two tridiagonal matricesA with diagonal elementsgfn

2

1v1Fn and off-diagonal elementsV andB having diago-
K.

t.

F

th

v.

ev
f

nal elements 3gfn
21v1Fn and off-diagonal elementsV.

Linear stability requires the eigenvalues ofA and B to be
positive. We have shown numerically that these conditio
are fulfilled for the multipulse excitation patterns consider
in this paper. Finally, we remark that also the heterocli
connection can be exploited to construct multipulse d
solitonlike excitations.

In conclusion, we have developed a method to create
calized multiple pulse solutions of the nonintegrable DN
with an external potential. To this aim we have exploit
homoclinic and heteroclinic connections related with t
map of the stationary problem. The merit of this method
that it enables us to control the location of the individu
pulses on the lattice as well as their amplitudes.
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