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Designing localized multipulse solutions of the discrete nonlinear Schdinger equation
with an external potential
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Freie-Universita-Berlin, Fachbereich Physik, Institut fiTheoretische Physik Arnimallee 14, 14195 Berlin, Germany
(Received 20 August 1997

We construct standing localized multipulse states for the nonintegrable discrete nonlineairggrequa-
tion (DNLS) with an external potential. The construction method is based on a nonlinear map approach, the
orbits of which represent stationary solutions of the DNLS. The sifsjlionary soliton states of the DNLS
lattice are associated with single-pulse homoclinic and heteroclinic connections. It is demonstrated that the
external potential can be adopted to excite multiple solitons at arbitrarily chosen locations on the lattice.
Furthermore, multiple soliton states having different maximal amplitudes are excited. Finally, we use the orbits
of the stationary map as initial conditions to design stationary localized multipulse solutions in the dynamics of
the (time-dependent discrete nonlinear Schdinger equation and discuss their linear stability.
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PACS numbe(s): 03.40.Kf, 63.20.Pw, 63.20.Ry

[. INTRODUCTION and bright solitons. However, with view to application it is
desirable that the lattice supports also solutions with multiple
The nonlinear Schidinger equatiofDNLS) represents a pulses carrying the energy in several portions.
prototype of a nonlinear lattice system that consists of The present paper is devoted to constructing such multiple
coupled nonlinear oscillators. The physical relevance of theoliton states for the DNLS with an external potential. The
DNLS is documented in a series of publicatigis-8|. A method is based on a repeated use of the same single-pulse
typical feature described by the DNLS is the ability of self- homoclinic (heteroclinig map orbit for suitable iteration in-
trapping of certain physical quantitig€g.g., excitation en- tervals of the nonlinear map. To this aim we adopt the ex-
ergy) as intrinsic localized modes at a single site or a fewternal potential such that the homoclinic orbit is left at a
sites of the lattice. homoclinic point near the hyperbolic equilibrium to be con-
For illustration we quote here the application of DNLS in tinued as a linear periodic orbit of tiny amplitude for a se-
optics when it models the propagation of electromagnetidected iteration intervallattice section Eventually, the ho-
waves in arrays of coupled nonlinear optical wavegu[@s moclinic orbit is reentered to excite another soliton pulse on
13]. A key problem in the study of the DNL&ot only in the the lattice.
optical context is the determination of the stable localized The current approach differs from the treatment of
excitation modes, which can serve for the reliable storage ofnultiple-pulse orbits based on the complicated properties of
energy[14—19,11. The discrete intrinsic localized modes of a homoclinic tangle associated with a nonintegrable Koap
nonlinear lattices have attracted recently much interest anBoincaresurfaces of sections of chaotic time-dependent sys-
rigorous results concerning their existence and stability haveems. A single-pulse homoclini¢heteroclinig orbit makes
been derived20,21]. Recently, such localized modes have on excursion away from some hyperbolic equilibrium point
been experimentally observed in an electrical network alsdor a periodic orbit, or invariant toriisand then returns to it
modeled by a DNL$22]. for an infinite number of iterationéin infinite time in the
For integrable continuous systengpartial differential case of time-dependent systemdoreover, there exists also
equationy such as the continuum nonlinear Sdfirmer other types of homoclinic orbits that make more than one
equation(NLS), well-developed methods exist to construct excursion away from the hyperbolic equilibrium point. The
soliton solutions. These solitons accomplish optimal losslesgesult is a multiple pulse homoclinic orbi27-30. How-
energy storage and energy transport, respect(&dy How-  ever, this process reveals a complicated irregular spatial
ever, the discrete version of the NLS in the form used in(and/or temporal jumping behavior between subsequent
many applications[see Eq.(1) below] is nonintegrable pulses. Multiple-pulse jumping orbits have been discussed,
[24,25 and therefore do not exhibit exact soliton solutions.e.g., in the context of a modal truncati@wo mode$ of the
Nevertheless, as demonstrated26] the excitation of stable damped-forced NL$31-33 and also in34,35. We under-
localized single-pulse states of the DNLS is possible despiténe that the advantage of our method of constructing multi-
its nonintegrability property. It is shown in detail that the pulse solutions based on regaining the same single-pulse ho-
results of a stationary analysis can be used to excite localizemioclinic (heteroclinig orbit is that we not onlycontrol the
stationary states of designed amplitude and pulse width ospatial distance between consecutive pulses, but are also able
the lattice. The stationary DNLS problem can be tackled by do tailor the amplitudes of the pulses, individually.
nonlinear map approactior details we refer td26]). It is The paper is organized as follows: In Sec. Il we describe
demonstrated that stable localized lattice states are supportdte DNLS equation with external potential. The stationary
by map orbits related to homoclinic and heteroclinic connecDNLS problem is introduced and attributed to a two-
tions. These homoclinic and heteroclinic orbits deliver thedimensional nonlinear map. In Sec. Il we present the meth-
single-pulse localized states on the lattice in the form of darlods for constructing multiple soliton solutions at selected
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lattice locations and/or of selected amplitudes. These station- Xn+1=Xn
ary multiple soliton states are then used as initial conditions My (5)
for the time-dependent DNLS to create standing localized y=—(w+yx?%) X, /V—Y,,

solutions showing multiple pulses. Finally, we discuss the
stability properties of the localized multipulse excitations. where M ; are involutions and their corresponding symme-
try lines are given bySy: x=y and S;: y=—(1/2)(wx
IIl. THE DISCRETE NONLINEAR SCHRO DINGER +9x%)/V. The inverse map is determined by~*
EQUATION =M M,.
To obtain stationary localized solutions in the form of
We study the discrete nonlinear Schimger equation Pright (dark) solitons, it suffices to study the fixed points

ALY (period-1 orbits of the mapM [26], which are located at
o) - - [ w+2V
Ilfj—t:_7'llfn(t)|21r//n(t)_v[dfn+l(t)+lr//n—l(t)] Xo=0, X.==\ - y ©

—Faihn(t), D wherex.. exists only if sgnf+2V) = —sgn(y).

The results of the stability analysis of the fixed point

where ¢,(t) is a complex amplitudey is the nonlinearity (;(0’90) at the origin can be summarized as folloj@s]:

strength, and/ is the transfer matrix element coupling adja-
cent oscillators at lattice sites andn=1, respectivelyF,

determines a static external potentiiéld) with real-valued Case g sane) Stability
amplitudes along the lattice. The dynamics of nonlinear() >—-2<2 >0 elliptic
Schralinger equationgincluding the integrable Ablowitz- (ii)) >-2<2 <0 elliptic
Ladik equation with external spatially uniform and time- (iif) <—2 ~0 hyperbolic
varying potentials F,(t)=£&(t)n has been studied in (iv) -9 <0 reflection

[24,36,31. These studies focused mainly on the integrability
and the existence of both soliton and breather solutions as

Il ically i localization in th f : . USSP : .
m(z fiaeslda dynamically induced localization in the presence o Concerning the pair of pointsX(.J.) their stability

properties are given by

hyperbolic

We are interested in time-periodic, but spatially localized

luti f Eq(1). Substituting th t -
solutions of Eq.(1). Substituting the ansatz Case Stability

Pa(t) = Ppexp( —iot), 2 (ii) hyperbolic
. . _ (iii) elliptic
with real amplitudesp, and the phaséoscillation frequency (iv) elliptic

w into Eq.(1), we derive the following two-dimensional map
R*—R? by definingx,= ¢, andy,= ¢,_; where the lattice Since the mapM is nonintegrablg26], the stable and

index plays the role of a discrete “time” unstable manifolds belonging to the unstable hyperbolic
fixed points intersect each other transversely yielding ho-
Xn+1= — (@+ YXa+F )Xy /V =y, moclinic orbits to the pointX,,Y,) in the casesiii) and (iv)
M: . (3 whereas in caséi) heteroclinic orbits connecting the points
Yn+1=Xn (X4 ,y4) and &_,y_) result.

_ o _ _ We described ifi26] how the homoclinic and heteroclinic
This map has been studied in the free-field cBge=0 in  orbits of the map\ support single-pulse localized solutions

[6,38,39,26. _ _ o on the DNLS lattice. In casii) there exist two homoclinic
For practical reasons lattice chains of large but finite numyprhits whose points alternate along the invariant manifolds.
ber N of sites of order 200 are chosen. The m&pis initi-  Each of the homoclinic orbits has one of its points on the

ated with a starting valuexg,y;)=(¢1,¢o) corresponding symmetry lineS, and S;, respectively. Under the mapping
to the first two lattice amplitudes at the left end of the Chaiﬂ.these points rap|d|y approach the map p|ane Origin_ The ho-
Wit_h each iteration step we gain then the gmplitude at thenoclinic orbit crossings,, which we denote bY bever, rep-
lattice next towards the right end of the chain. resents a stationary excitation pattern ({7171 --) on the

For later use we briefly review the properties of the mapattice chain, called even-parity mode[40] and sometimes
M in the free-field case of,=0 [26]. Reversibility of the  giso intersite centered local mof#9]. (The dots stand for
map.M is established by the factorizationf= MoM; with  yanishingly small amplitudes in the exponential tail of the

excitation pattern. The other homoclinic orbif ¢,44 has

Xn+1=Yn one member onS; and obeys the mode pattern
Ma: (4) (---777---) with three large amplitudes called odd-parity
Yn+1=Xp mode[41] or on-site centered local modi&9].

In case(iv) the homoclinic map orbit supports a soliton-
and like solution on the lattice chain which exists in the gap
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. FIG. 3. The amplitude profilgy,(t)|? of the even-parity local-
. ized mode.

FIG. 1. First windings of the homoclinic tangle of the hyper- oL , 2
bolic equilibrium point at (0,0) for the map1 in the free-field case shown. Note that for the excitation prof||l¢vn(t)| the stag-

F,=0. The symmetry liness, and S, are superimposed. Param- 9€fNg of the amplitudeg, plays no role.
eters:w=-2.1,y=1, andvV=0.8.
lll. EXCITATION OF MULTIPULSE LOCALIZED

above the linear passing band % 2V) and has alternating STATES
signs for adjacent amplitudes, i.e., sgn( 1) = —sgn(¢,) as
a characteristic feature. This stationary localized structure We now turn to the map properties in the presence of the
has been called ataggered solitorby Cai, Bishop, and e€xternal field. It is a characteristic feature that the bright and
Gronbech-Jensen in their Study of the combined AL-DNLSdaI’k solitonlike solutions of the DNLS in the free-field case
equation[17]. Correspondingly, the soliton solution of case represent single soliton excitations, i.e., their excitation pat-
(iii ) is called unstaggered soliton. Note that upon sign changterns exhibit a single pulséaround the soliton centeiof
y— —v and w— — w, the map has the symmetry property high (low) lattice amplitudes, which emerges from the back-
sgn(¢,.1)=—sgn(¢,) so that the unstaggered and stag-ground. On either side of the soliton center the amplitudes
gered soliton replace one another. For positivegativé y  drop (rise) exponentially with increasing distance from the
the unstaggered Odd-pari‘tytaggered even-par)tynode has soliton center to VaniShing amplitudes for the bl’lght soliton
lower energy than the unstaggered even_paﬁnﬁggered (tO a nonzero constant level for the dark sol)torn this
odd-parity mode[17,26]. section we show that for the DNLS with external potential

Concerning casgi) the resumng heteroclinic map orbit Fn the excitation of multipulse localized states is possible.
represents a kinklike solution, also callediark solitonon We have just shown that for given sign pfthe existence
the lattice. There exist staggered and unstaggered versions@$ Well as the type of solitonlike solutions depend on the
this soliton too. value of the ratiow/V. From Eq.(3) we infer immediately

In Fig. 1 we show the first windings of the stable andthat the frequency» can be tuned locally by the external
unstable manifolds of the hyperbolic fixed point at the originpotentialF,. In this way it is possible to “jump” at a certain
in the x-y-map plane for caséii). One clearly recognizes iteration step ofM deliberately from one orbit on the map
the homoclinic points as the intersection of the stable anddlane of a givenw to different target orbits on the map
unstable manifolds. We superimposed the symmetry Byes planes belonging te,=w+F,. Considering, for example,
andS;. Taking the stationary odd-parity modlé.qq as the the potential
initial conditions ¢,(t=0)= ¢, for the time-dependent sys-
tem (1) the amplitude profilg,(t)|? of the standing bright
solitonlike solution on the DNLS lattice is excited as de-

picted in Fig. 2. In Fig. 3 the even-parity localized mode is ) )
we obtain the linear map

Fre1=—(0+y x3) =V (1+y;/x,) , (7

Xn+1=Yn
Mlin: (8)
Yn+1=Xn,

]
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giving orbits of period-1, that is a constant excitation pattern.
20 Moreover, suppose one knows at the iteration “timgdt-

tice site m>1 the coordinatesx,,y,) of one orbit member

of an arbitrary(nonlineaj orbit, then this orbit can be left at

that iteration “time” m to proceed as a linear period-1 orbit

FIG. 2. The amplitude profiléy,(t)|2 showing the standing Xj+1=X; by adapting the potential due to E) for j=m.

bright solitonlike solution on the DNLS lattice. The stationary soli- After any iteration step the nonlinear map can be restored by
ton (odd-parity modg is excited with the help of the homoclinic switching off the external potential and hence the orbit is
orbit with one point onS; on the map plane shown in Fig. 1. brought back to the original nonlinear one.
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Multiple solitons at selected lattice sites

With respect to bright multiple solitonlike solutions of the
DNLS, we can apply the method described above to create |y !

exact standingsingle soliton states at selected lattice loca- 08
tions. All we need is the knowledge of one member of the 06
homoclinic orbit to a given set of parametets, {,V). This o
can be achieved via the normal form computation as de- o2 20

scribed in[26]. The complete homoclinic orbit and hence the 01
soliton state can be derived by iterating the m&p The
width of the soliton pulse that is governed by the dropoff of
the amplitudes with increasing distance from the soliton cen-
ter sitem can be estimated byp .| <\"| ¢y | with A=

[ — w+Jw?—4VZ]/(2V) being the largest eigenvalue of the _ )
tangent map due to linearizing around the hyperbolic point®c=1.045 789 20 of the soliton as thecoordinate of the
Note that the larger the ratio/V, i.e., the deepew lies in homoclinic point & ,yt) lying on the symmetry lineS, for

the gap below the linear passing band, the more rapid is thihe parameter&=—2.1, y=1, andV=0.8 analytically via
amplitude decay. the corresponding Birkhoff normal forfi26]. With this start-

In order to excite well distinguished multipulse excita- ing value the map has been iterated to create a soliton on the
tions on the lattice, we need to know beyond which latticelattice centered around the site= 19. Since the soliton am-
site the soliton amplitude has decayed sufficiently strong intglitudes at sitesn=38 fall below 10°° giving a ratio
the exponential tail of the soliton where the amplitudes arep _../$,,<2x 1075, the siten=38 has been taken to be
actually negligible. Then the orbit can be continued as &he cutoff site. Here the external potential in the map is
linear orbit of very smallconstantamplitudes for a selected gitched on appropriately to progress the period-1 orbit of

iteration interval(lattice segment Afterwards the orbit is very small amplitudes for eight cycles. Afterwards for

Lorced leCk t(.) ?dmap tplanfe ont\r/]vmch '.t co_r:;]efs tt?\ lie on & 49 the orbit is traced back to the homoclinic orbit, which
riomociinic point geparting from the ongin with TUrther Map o, e the second pulse of the two soliton state. Finally, we
iterations and thus exciting another soliton pulse on the lat-

tice. Therefore it is appropriate to define tbetoff sitesas use the ampli_tude profiles, of the stationary _t\{vo—solitqn
the lattice sitean=k apart from the soliton centen such constructed with the help of the mal as the initial condi-

that | ey /dm|<e<1. Since the homoclinic points ap- t@ons for the time-depgndent DNL_G) with external poten-
proach the map origin asymptotically, the valueeotan be tial to excite the standing two-soliton state shown in Fig. 4.
chosen arbitrarily small by selecting sufficiently the number
n. of map iterations such that

FIG. 4. A two-pulse solitonlike statéor details see text

Strongly confined multisolitons of selected amplitudes
n=Ntelm, (9)
We now exploit the reversibility property of the magp

(Very small amplitudes are typically obtained after-120 0 pass repeatedly through the single-pulse homoclinic orbit
iterations of the central soliton amplitudle. and excitestrongly confined multisoliton state®o this aim

The process of multisoliton creation proceeds in the fol-\we use the reflection symmetry of the m&p on the lineS,.
lowing way: Firstly, we excite a single soliton centered This means that for every homoclinic poink"(y") lying
around the sitem; in the standard manner using the ho- below the liney=x for which ¢,_;< ¢y there exists a mir-
moclinic orbit. At its cutoff sitem; +k; the external potential ror point (y",x") above that line withp,_;> ¢,. Under the
Fn,+k, = —[w+ 7(xkl+m1)2]—V(1+ykl+ml/xkl+ml) is action of the map M the amplitudes &y 1,dK)
switched on to leave the homoclinic orbit and to enter the= M (¢, ¢x—1) grow (fall) for homoclinic points below
linear period-1 state of almost negligible amplitudes (above the line Sy, i.e., [dys1|>|dl ([drsal<[dil). In
=Xk, +m,- After progressing a chosen numbdrof period-1  order to produce strongly confined multisolitons, we first ex-
cycles the external potential can be switched off. To creatéite a soliton using the homoclinic orbit. One takes a ho-
the next lattice soliton centered at ske+m,+M+1, the moclinic point (f,yy) below the lineS, sufficiently close to
homoclinic orbit has to be reentered at the pointthe origin, such that the corresponding lattice amplitudes
(yk1+m1,Xk1+m1), which amounts to a reverse operation of (¢, 1,¢y) (in the exponential tail of the solitgrare lower
the last member of the linear period-1 orbit according tothan the one at the cutoff site. The mag is iterated and
Xk my M Yieg s g+ ) — (Vi smy+M Xk +mym)- The re-  eventually the homoclinic pointx{,yg) lying on the sym-
verse operation is described belgsee Eq(10)]. metry lineS, is reached. The coordinate of this point de-

In this way we are able to excite multisoliton states hay-{ermines the maximum soliton amplitudg.. For further
ing their soliton center at any selected lattice location. This idteration the map orbit proceeds above the Ifeuntil the
due to the switching mechanistk, cycle of the linear corresponding mirror pointyg,xy) to the starting point

period-1 orbit— homoclinic orbit— k, cycle of the linear  (X¢.y§) in the very vicinity of the map origin is reached.
period-1 orbit etc. This yields a first soliton. Then we reverse the coordinates of

This process is illustrated in Fig. 4 for a two-soliton state.the homoclinic point ¥§ ,x5) — (x!,yR) with the following
We computed the central (maxima) amplitude reverse operation
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FIG. 5. Two very confined solitonlike states. FIG. 7. A two-pulse state based on two even-parity localized
modes with their maximal amplitudes continued over 20 lattice

. sites.
s 1= — (0+ YXE+FOX V=Y =Yy, I

homoclinic orbit, the soliton maxima drop exponentially
Yi+1=Xks (100 with increasing distance from the central soliton.

which is accomplished by the local potential Solitons with more than two equal center amplitudes

y Finally we demonstrate how solitons with more than two
Fe=— ( w+ yx§+ 2V —k) . (11) equal central sites can be excited..We recall that the two-site
Xk center of the staggered even-parity mode corresponds to a

Therefore the map repeats the homoclinic orbit and a secor{aomofl'nlc point W|thx2= —yQ - The two membersx; ,y-)
soliton adjacent to the first is built up. Figure 5 shows such @nd -,y ) of the period-2 orbit exhibit the same symme-
two-soliton state for which one soliton is immediately fol- try. Therefore, the even-parity center can be continued over
lowed by a second one. more than two lattice sites as a period-2 orbit by applying the
The reverse Operation can also be app“ed before the iteréO”OWing _external potential, which turns the soliton center
tion of rt]hehstarting point X[,y reaches the homoclinic into a period-2 orbifcf. Eq. (6)]
point (X.,Y.) on S;. In this fashion a soliton of amplitude _ hy 2
less than the largest possible is excited. In dependence on the F=—-[o+t2V+(x) ] . (12
numbern of iterations performed on the homoclinic orbit ~ Combining this method of continuing a period-2 orbit
below S, before the reverse operation the resulting latticewith the technique of switching from a linear periodic orbit
soliton has a different maximal amplitude, that is, the largetto the homoclinic orbi{and vice versa we create the exci-
n the higher the amplitude, ;< ¢.. tation pattern shown in Fig. 7. The even-parity center ampli-
In Fig. 6 we show a DNLS lattice exhibiting five solitons, tudes have been kept for 20 lattice sites for each of the two
the centers of which are positioned 31 lattice sites apart frongolitons.
each other. In creating this multipulse lattice excitation we
applied both the method of creating solitons at chosen loca- IV. LINEAR STABILITY
tions (see aboveas well as the reverse operation to excite
solitons of chosen amplitude.
The central soliton placed around the site 81 has the
maximal possible amplitude, determined by the coordi-

We have used the map orbits of the different stationary
multipulse excitations as initial conditions for the time-
dependent DNLS1) with external potential to excite stand-
ing multisoliton solutions. This proceeds in the same way as

ggfcgr\ihseolhtgrr?sofcl)mtlg lz?t":n%srl.' r-:-thse' drgac)g?r]gsogahdeti»vgtﬁe in [26] to excite single soliton states for the free-field DNLS.
) ! ! Ight Si P An important question is whether these stationary states

coordinates of the homoclinic points preceding the point on

: : L X - ()= ¢ exp(—iwt) are linearly stable. For perturbations
Sy, respectively. Since the |nd|V|duz_iI maxima of each S’O“tonun(t) of the stationary solutions maintaining the symmetry
correspond to consecutive homoclinic points from the Sam%roperties of the excitation patterie,g., for the unstaggered

solitons with real ¢,=0 all u, must be real and non-
negative we can construct a Lyapunov function assuring
stability. We exploit the conserved quant®y==|¢,|2. As

[%a(t)[* 8% \ it the Lyapunov function we take
o mmww il L=P—P, (13
05 ‘IHH Hlllmm = 2 0t i
0.4 i il wherePs=X2 .65 . It is readily seen that
8:2 i e i TR 20
o L@@ I dL_ _ _
0 _l. ELJ’MM%%E 7=0, L(¢)=0, L(gy+u)=0. (19

150 To investigate linear stability for arbitrary complex per-

FIG. 6. A five-pulse lattice excitation. turbationsu,(t) we make the ansaf4]
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Yn(t) =[Pt un(t) Jexp(—iwt) , (19

whereu,(t) are small perturbations. Linearizing Ed) we
obtain the system in tangent space

duy
Tdt

Y (2¢ﬁun+ ¢§U:)—V(Un+1+un,l)

—(w+Fyuy. (16)

Settingu,,=x,+iy, with realx andy and decomposing Eq.
(16) into real and imaginary parts we obtain the system

7

X —(’}’¢§+ ©+Fp) Yn=V(Yni1+Yn-1)s

y=(3ydi+ 0+ F)Xq+V(Xqi1+Xp-1) . (18)

The linear stability depends on the spectral properties of

the two tridiagonal matrice8 with diagonal elementsquﬁ
+w+F, and off-diagonal element¢ andB having diago-

D. HENNIG AND H. GABRIEL
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nal elements 3¢ﬁ+ w+F, and off-diagonal elementy.
Linear stability requires the eigenvalues Afand B to be
positive. We have shown numerically that these conditions
are fulfilled for the multipulse excitation patterns considered
in this paper. Finally, we remark that also the heteroclinic
connection can be exploited to construct multipulse dark
solitonlike excitations.

In conclusion, we have developed a method to create lo-
calized multiple pulse solutions of the nonintegrable DNLS
with an external potential. To this aim we have exploited
homoclinic and heteroclinic connections related with the
map of the stationary problem. The merit of this method is
that it enables us to control the location of the individual
pulses on the lattice as well as their amplitudes.
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